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The spectral weight of states induced in the Mott gap via hole doping in the two-dimensional Hubbard
model is studied within cluster dynamical mean-field theory combined with finite-temperature exact diagonal-
ization. If the cutoff energy is chosen to lie just below the upper Hubbard band, the integrated weight per spin
is shown to satisfy W+����� �� denotes the total number of holes�, in agreement with model predictions by
Eskes et al. �Phys. Rev. Lett. 67, 1035 �1991��. However, if the cutoff energy is chosen to lie in the range of
the pseudogap, W+��� remains much smaller than � and approximately saturates near ��0.2, . . . ,0.3. The
analysis of recent x-ray absorption spectroscopy data therefore depends crucially on the appropriate definition
of the integration window.
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I. INTRODUCTION

The two-dimensional single-band Hubbard model has
been widely used to study the role of Coulomb correlations
in the high-Tc cuprates. One of the remarkable features of
this model was pointed out long ago by Eskes et al.,1 namely,
that doping the system with � holes does not yield unoccu-
pied low-energy states of weight � /2 per spin, like in an
ordinary band insulator. Instead, as a result of strong local
Coulomb interactions, this weight is approximately given by
W+�����. The physical reason for this feature is that both
lower and upper Hubbard bands must contribute to the gen-
eration of itinerant low-energy states when holes are added
to the system.

In striking contrast to this prediction, recent x-ray absorp-
tion spectroscopy �XAS� data on Tl2Ba2CuO6−� and
La2−xSrxCuO4�� by Peets et al.2 show a linear behavior
W+����� only up to about ��0.2. At doping concentrations
in the range �=0.2, . . . ,0.3, W+��� levels off, suggesting the
inapplicability of the single-band Hubbard model for these
high-Tc compounds.

Since the calculations by Eskes et al.1 were carried out for
small one-dimensional clusters, it is not entirely clear to
what extent the discrepancies with respect to the data in Ref.
2 might be related to the simplicity of the theoretical model.
In fact, Phillips and Jarrell3 recently claimed that state-of-
the-art many-body calculations based on the dynamical clus-
ter approximation �DCA� �Refs. 4 and 5� do indeed predict a
saturation of W+��� close to ��0.2, in agreement with the
measurements by Peets et al.

The aim of this work is to demonstrate that the doping
variation of the spectral weight of the induced low-energy
states depends crucially on the choice of the upper limit of
the energy window in which these states are counted.6 To
evaluate W+��� for the two-dimensional Hubbard model we
use the cluster extension of dynamical mean-field theory
�DMFT� �Refs. 7 and 8� combined with finite-temperature
exact diagonalization �ED�.9 The results show that, if the
integration window of W+��� is chosen to reach up to the
lower edge of the upper Hubbard band, then W+�����, just
as predicted by Eskes et al.1 If the cutoff energy, however, is
chosen to lie in the range of the pseudogap, then W+��� is

much smaller than � and approximately saturates near �
�0.2, . . . ,0.3, as found in Ref. 3 It is clear, therefore, that
the interpretation of the XAS measurements must be based
on the correct choice of the energy window over which the
induced low-energy states are taken into account.

II. RESULTS AND DISCUSSION

The cluster DMFT calculations are carried out for the
two-dimensional Hubbard model with nearest and next-
nearest hopping parameters t=0.25 eV and t�=−0.075 eV,
respectively �bandwidth W=2 eV�. The onsite Coulomb in-
teraction is U=2.5 eV and the temperature is T=0.01 eV.
With this choice of parameters the system is a Mott insulator
in the zero doping limit. To account for intersite correlations,
the square lattice is viewed as a superlattice consisting of 2
�2 clusters. Details of these finite-temperature ED/DMFT
calculations can be found in Ref. 9.

Figure 1 shows the spectral distributions for a series of
hole doping concentrations. For simplicity, we show the ED
cluster spectra as they can be evaluated directly at real �
without requiring analytical continuation. Since we are pri-
marily concerned here with integrated sections of the density
of states, these cluster spectra are adequate for our analysis.
The electron density per spin is given by n�=0.5�1−��. At
all dopings, the upper Hubbard band is seen to be separated
from the low-energy states by a broad minimum related to
the Mott gap in the half-filled limit. The lower edge of this
band gradually shifts from �=1.5 eV at low doping to about
3.0 eV at large doping. The low-energy states close to EF
=0 reveal a pseudogap at about 50 meV for doping up to
about 0.1. In Ref. 9 we showed that the origin of this
pseudogap can be traced back to a prominent collective
mode in the imaginary part of the �� ,0� component of the
self-energy. �See also Ref. 5 and other theoretical work cited
in Ref. 9.� This mode is therefore directly linked to spatial
fluctuations within the 2�2 clusters and cannot be described
within single-site DMFT. Electron-addition states in the vi-
cinity of this collective mode are highly damped, giving rise
to a pseudogap. In fact, the energy and strength of this mode
exhibit a clear dispersion with doping, which translates into a
corresponding doping variation of the mean position and
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width of the pseudogap. Moreover, since the collective mode
is located slightly above EF, states in this energy range have
a much shorter lifetime than states below EF, giving rise to a
pronounced particle-hole asymmetry. As shown in Fig. 2, the
low-energy region of the DMFT lattice spectra, obtained via
analytical continuation of the cluster self-energy to real �, is
fully compatible with the cluster spectra given here in Fig. 1.
�For details of the extrapolation procedure, see Ref. 9.� These
lattice spectra are also qualitatively consistent with the cor-
responding DCA spectra for 16-site clusters �using t�=0� de-
rived in Ref. 3

The spectra in Figs. 1 and 2 demonstrate that the low-
energy states induced via hole doping are concentrated near
EF only at very low doping. With increasing doping, these

states spread over a larger energy window, until at unit dop-
ing an uncorrelated empty band appears between EF and the
shifted upper band edge at 2 eV. Evidently, upon hole dop-
ing, spectral weight transfer from the upper Hubbard band
begins to states near EF and gradually extends to the entire
range up to EF+W.

Figure 3�a� shows the integrated spectral weight of the
doping-induced low-energy states, W+���, where the upper
edge �c of the energy window lies in the broad minimum
below the upper Hubbard band. In the present case a conve-
nient choice is �c= �1+�� eV. �The low-doping behavior of
W+��� was previously shown in Fig. 5 of Ref. 9. See also
Ref. 10.� The results demonstrate that W+����� in the entire
doping range, consistent with the predictions by Eskes et al.1

Figure 3�b� shows the integrated spectral weight for a
variety of fixed, doping-independent cutoff energies. For �c
in the range of the pseudogap, i.e., �c�0.2, . . . ,0.3 eV,
W+��� remains much smaller than � and approximately satu-
rates near ��0.2, . . . ,0.3. The reason for this saturation is
that, as pointed out above, spectral weight transfer from the
upper Hubbard band must proceed at larger doping progres-
sively to states farther above EF, eventually covering the
range up to EF+W. For �c�1.0, . . . ,1.5 eV, W+�����, in
agreement with Fig. 3�a�. For �c�1.5 eV, the energy win-
dow at low doping includes part of the upper Hubbard band
�see Fig. 1� so that W+��� does not reach zero in the small
doping limit. In the limit �c	0 �not shown�, W+��� includes
all unoccupied states. Thus, W+���=1−n�=0.5�1+��. To
capture properly the integrated spectral weight of the doping-
induced low-energy states it is evidently necessary to adjust
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FIG. 1. �Color online� Spectral distributions calculated within cluster DMFT for two-dimensional Hubbard model at several hole dopings
�broadening 
=0.02 eV, U=2.5 eV, and T=0.01 eV�. �a� �=0.035, . . . ,0.20 and �b� �=0.31, . . . ,0.69. The dashed lines denote the bare
density of states. The pseudogap is located about 50 meV above EF=0 at low doping up to ��0.1. The lower edge of the upper Hubbard
band shifts from about 1.5 eV at low doping to 3 eV at large doping.
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FIG. 2. �Color online� Lattice spectra for U=2.5 eV and T
=0.01 eV obtained via extrapolation to real �. Solid curve: hole
doping �=0.18 with peak at EF=0. Dashed curve: �=0.03 exhibit-
ing a pseudogap above EF. �From Ref. 9.�
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the cutoff energy so that it roughly tracks the lower edge of
the upper Hubbard band.

The cluster DMFT results discussed above are for U
=2.5 eV. As can be seen in Fig. 1, the upper Hubbard band
is separated from the itinerant unoccupied states by a rather
wide gap of about 1 , . . . ,2 eV, regardless of doping. The
low-energy spectral peak can therefore be defined without
ambiguity. Since there is some uncertainty concerning the
appropriate value of U for the high-Tc cuprates, we have
calculated the spectral distributions also for U=1.5 eV. As
shown in Fig. 4�a�, the upper Hubbard band then lies about 1
eV lower and overlaps the upper part of the uncorrelated
density of states. The distinction between localized and itin-
erant states is therefore less clear than for U=2.5 eV. None-
theless, the high-energy peak is still separated from the low-
energy region by a shallow minimum, except in the limit of
small doping. At this Coulomb energy, the system is barely
insulating at half filling so that the separation between itin-
erant and localized states at small doping becomes highly
ambiguous.

Figure 4�b� shows the integrated weight of the low-energy
feature, where the minimum close to the lower edge of the
upper Hubbard band is used as cutoff energy, i.e., �c
�0.7, . . . ,1.4 eV for �=0.035, . . . ,0.32. Because of the un-
certainties pointed out above, W+��� does not approach zero
in the low-doping limit. Nevertheless, W+�����, in agree-
ment with the prediction by Eskes et al.1 Compared to the
analogous spectral peak for U=2.5 eV, W+��� is slightly
larger for U=1.5 eV. This trend is also consistent with the
results discussed in Ref. 1. The reason for this enhancement
is the less clear distinction between itinerant and localized
unoccupied states for smaller U, i.e., some of the incoherent
weight spreads to lower energies. In spite of these uncertain-
ties, it is evident that W+��� does not exhibit saturation.

The experimental spectra by Peets et al.2 reveal two fairly
clearly separated regions: a low-energy feature and a peak at
about 1.0, . . . ,1.5 eV higher energy.11 It seems plausible
therefore to associate the former with the doping-induced
low-energy states and the latter with the upper Hubbard
band, in qualitative correspondence with the spectra shown
in Fig. 1. Since the lower peak has an intrinsic width of
about 1 eV, it is clearly not possible to associate its spectral
weight only with the much narrower pseudogap region. In-
stead, this low-energy peak most likely covers all unoccu-
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FIG. 3. �Color online� Integrated spectral weight of low-energy states per spin as a function of hole doping. �a� Integration window
extends to minimum below the upper Hubbard band, with doping-dependent cutoff energy �c��1+�� eV. �b� Integration window extends
up to doping-independent cutoff energy �c=0.1. . .3.0 eV.
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FIG. 4. �Color online� �a� Spectral distributions calculated
within cluster DMFT for two-dimensional Hubbard model at sev-
eral hole dopings �broadening 
=0.02 eV, U=1.5 eV, and T
=0.01 eV�. The dashed lines denote the bare density of states. �b�
Integrated spectral weight of low-energy states per spin as a func-
tion of hole doping. The integration window extends to the doping-
dependent minimum below the upper Hubbard band. Empty dots:
U=1.5 eV. Solid dots: U=2.5 eV.
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pied states below the upper Hubbard band. The fact that this
peak saturates near ��0.2 in the experiment is therefore in
conflict with the cluster DMFT results for the single-band
Hubbard model shown in Fig. 3�a�. According to the results
provided in Fig. 3�b�, the saturation obtained by Phillips and
Jarrell3 appears to be related to the small, doping-
independent cutoff energy. Since their spectra exhibit a simi-
lar doping variation as the ones shown here in Figs. 1 and 2,
a larger doping-dependent cutoff energy should give an inte-
grated low-energy spectral weight in agreement with the
variation shown in Figs. 3�a� and 4�b�.

As shown recently by Wang et al.,12 the experimental data
by Peets et al. are also not compatible with results of a
single-site DMFT model calculation including Cu d and O p
orbitals. It would be very interesting to generalize this model
to allow for intersite correlations.

III. CONCLUSION

The integrated spectral weight of states induced in the
Mott gap of the two-dimensional single-band Hubbard model
via hole doping is examined within cluster DMFT based on
finite-temperature exact diagonalization. The doping varia-
tion of this weight is shown to depend sensitively on the
energy window in which the low-energy states are counted.
If the cutoff energy is chosen to vary with doping and to lie

in the minimum below the upper Hubbard band, qualitative
agreement with model predictions by Eskes et al. is found.
On the other hand, if the cutoff energy is taken to be inde-
pendent of doping, the integrated spectral weight exhibits a
completely different variation with doping. In particular, at
small cutoff energies, approximate saturation at low doping
is found. Since the XAS data by Peets et al. require integra-
tion over all unoccupied states except for the upper Hubbard
band, we conclude that these data are not compatible with
present cluster DMFT predictions for the single-band Hub-
bard model.

Note added in proof. As now pointed out by Phillips and
Jarrell, the experimental data of Refs. 2 and 11 are in excel-
lent agreement with the trend shown here in Fig. 3�a�, with
the exception of two data points at 0.3 hole doping. Thus, if
the error bars of these points are sufficiently large, then there
is no conflict between the data and the predictions of the
single-band Hubbard model.13
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